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A nonlinear diffusion equation is derived for the longitudinal dispersion of a 
buoyant pollutant in a slowly varying current. The essential simplifying feature 
is that the (non-uniform) water depth is assumed to be much less than the channel 
width. It is found that for small concentration gradients there is a transverse 
circulation which leads to a marked reduction in the longitudinal dispersion. For 
large concentration gradients the longitudinal circulation predominates and the 
longitudinal dispersion increases. 

1. Introduction 
The flow of fresh water from rivers into estuaries and the discharge of heated 

water from industrial plants into rivers or estuaries are two large-scale examples 
of buoyant contaminants in currents. Such is the magnitude of gravity relative 
to fluid-mechanical forces that it only needs a small concentration of a buoyant 
contaminant to have a significant effect upon the flow and hence upon the 
evolution of the contaminant distribution. Empirically the buoyancy effect can 
be modelled by permitting the longitudinal dispersion coefficient to depend in 
some simple way upon the concentration gradient (Harleman & Thatcher 1974; 
Brocard & Harleman 1976). The aim of this paper is to show how the variation 
of the dispersion coefficient can be calculated. An analogous calcula.tion for 
rectangular geometries has recently been given by Chatwin (1 976). 

For extremely dilute (or neutrally buoyant), laterally well-mixed pollutant 
distributions in pipe flow Taylor (1953) has shown that the longitudinal evolution 
is described by a linear diffusion equation. Essentially, this equation describes 
an asymptotic balance between cross-sectional mixing and longitudinal spreading 
due to non-uniform advection. The dispersion coefficient (or effective longi- 
tudinal diffusivity) depends directly upon the current distribution and inversely 
upon the lateral diffusivity. Erdogan & Chatwin (1967) point out that for 
laminar flow there are two effects of buoyancy. First, the longitudinal density 
gradient causes a longitudinal pressure gradient which changes the velocity 
distribution and may increase the dispersion. Second, lateral variation of density 
(due to the non-uniform advection) sets up a secondary flow which augments 
the cross-sectional mixing and reduces the dispersion. Whether the buoyancy 
increases or decreases the dispersion depends upon the relative importance of 
these two effects. 
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For flow in circular pipes Erdogan & Chatwin (1967) have shown that the 
leading-order effect of buoyancy is to introduce an extra term in the dispersion 
coefficient proportional to the square of the 'concentration gradient. The absence 
of a linear term is due to the vertical symmetry of circular pipes. Thus we can 
anticipate that, if the calculation procedure of Erdogan & Chatwin were adapted 
to apply to open-channel flow, then the leading-order effect of buoyancy would 
be to make the dispersion coefficient depend linearly upon the concentration 
gradient. Qualitatively, this agrees with the empirical linear model favoured 
by Harleman & Thatcher (1974). 

I n  practice, an allowance for buoyancy is needed precisely because it is not a 
weak effect. Thus the assumptions underlying the calculation procedures of 
Erdogan & Chatwin are not appropriate. Indeed, it is likely that the empirical 
linear term for large concentration gradients might differ from that for very small 
gradients. Instead, the present paper follows Pischer (1967, 1972) and makes 
explicit use of the fact that rivers and estuaries are typically very shallow 
relative to their width. 

Even with the restriction to vertically well-mixed currents, the wide range 
and large number of independent parameters precludes us from making a 
universal model. In the present paper we shall assume that the time scale for 
current variations is comparable with or longer than the time scale for longi- 
tudinal dispersion. This means that the analysis pertains more to rivers than 
to estuaries. It is hoped to address other cases in subsequent papers. 

The major conclusion of the analysis is that the buoyancy can cause a marked 
reduction in dispersion (i.e. the secondary-flow effect is usually much more 
important than the longitudinal pressure gradient). This prediction has serious 
implications for the thermal pollution of rivers. For example, a modest increase 
in the heat discharged into a river could cause a disproportionately large increase 
in the maximum temperature. 

2. Equations of motion 
In seeking a model equation for longitudinal dispersion it is implicit that, the 

pollutant distribution is laterally well mixed. This can be ensured if the length 
scale of the concentration variations greatly exceeds the channel or pipe width 
(Taylor 1953). To make this requirement explicit, we introduce a small para- 
meter 8, which is the ratio of a typical channel breadth B to the longitudinal 
length scale A. An immediate implication of the lateral mixing is that to the first 
approximation the pollutant moves at the cross-sectional average velocity 0. 
Thus, to study the slow evolution of the pollutant distribution it is convenient 
to use axes moving at  the bulk velocity 0. At this stage in our calculations we 
shall take 0 to be constant. 

Such is the complexity of the situation which we are attempting to model 
that it is necessary to make many simplifying aasumptions. In  particular, the 
channel is taken to be straight and of constant cross-section, turbulent mixing 
is represented by eddy diffusivities, and we make the Boussinesq approxima- 
tion (i .e. neglect the inertial but not the buoyancy effect due to density varirttion6). 
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To achieve further simplification of the mathematical analysis we specify the 
a-ordering of the many terms in the equations of motion relative to the basic 
dimensional quantities B and a. For definiteness we choose the most complicated 
possibility. This means that for a reasonably wide parameter range no significant 
terms are neglected although some numerically insignificant terms may be 
retained. The evolution time scale is of order 6-2, the reduced gravity associated 
with typical density variations is of order B-1 and the eddy diffusivities are all 
of order e0. 

The resulting version of the equations of motion is 

€28, C+a( u- n) a, c 4- va, c + wa,c 

€28, u + E ( U - a ) a ,  u+ va, u+ Fa, u+a,p 

€28, v+B(u-qax v+ va, v+ wa, v+B-la,P 

$a, w+s(U-u)a*w+ va, w+ wa,W+E-la,P-a-l~gC 

= 6 a x ( K , € a x  c) + a,(., 8, c) a2(K3 8, c), ( 1 a)  

= eFx(2v11eax U)fa2/[v12(av u+Eax V)]+a2[v13(azu+~ax w)], ( I b )  

= 6a,rvl2(a, u+eax v)+a5[v23(at v+a, v ) i ,  ( 1 ~ )  

= sax[ vl3(a, + w)] + a,[ "23('2 v + w)] + a5(2v33 ' 2  w, 9 ( I  d, 

sax u+a, v+a5 w = 0, (14 
U = 'v = W = a,C+a,ha,C = 0 on z = -h (y ) ,  (If) 

a,U=a,V= W = a 5 G , o  on z = G  (191 
Here U ,  V and W are the velocity components in the downstream, transverse 
and vertica,l directions, C is the concentration of the pollutant, 6-l P the excess 
pressure above mean hydrostatic, s-lag the reduced gravity (positive for a 
buoyant contaminant), the K$ are eddy diffusivities for salt or heat transport 
and the vd5 are eddy diffusivities for momentum. Very close to solid surfaces, 
and everywhere in the special case of laminar flow, we have K~ = K and vdj = v. 
The simple form of the free-surface boundary condition is a consequence of the 
Boussinesq approximation (i.e. local fluid-mechanical forces are not adequate 
to lift the free surface significantly). 

We now make explicit use of the fact that B is small and formally seek regular 
perturbation solutions to (1 a-g) of the form 

c = C(0) + BC(1) + SZC(2) + . . . , 
where the CG) are all independent of a. For simplicity we shall ignore possible 
s-dependence of the eddy difisivities. 

The leading-order terms in the diffusion equation (1 a)  are satisfied trivially 
if C(O) is laterally well mixed. (Indeed, without loss of generality we can identify 
0 0 )  with the cross-sectional average concentration C.) From the lateral momen- 
tum equations ( i c ,d )  it  then follows that Po) is hydrostatic in terms of the 
density perturbation: 

P O )  = - agc@)(g- 2) + 1: (&.xga, C(O)d0) - P )  dX. 
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Here P ( X , T )  is the pressure gradient needed to maintain the constant mass 
flux, and the z(O)(X, T) term is associated with there being a buoyancy-induced 
longitudinal circulation. Equation (1 e)  permits us to eliminate the lateral 
velocities in favour of a stream function: 

V(0) = a, Y, W(0) = - a, Y. 

Using these results in (1 u-g) we can derive the much simpler equations 

a,Y a, 0 1 )  - a, Y a, C(1) - a,(., av C(1)) - a,(., a, 01)) 

a, Y a, U(0) - av Y a, U(0) - a,( YIZ av U@)) - a,( Y13 a, P) 

a,Ya,(a; Y +a$Y)-a,Ta,(a;Y +a$Y)+(a$-a ; )  [ Y z 3 ( a : - a ; ) Y ]  

+2a,a,[(Y,,+ v33)ava*Y] = Olga,c(l), ( 2 4  

U(0) = Y = aSY+i3,h8,Y = a,C(1)+a,F,aVC(1) = 0 on z = -h,  (2 4 
8, UtO) = Yp = a ; y  = a,C(l) = 0 on z = 5. ( 2 4  

= (U- U ) a x 8 ,  ( 2 4  

= P + 019[(6- z )  - ~ z ( o ) ]  a, C, (2 b )  

Integrating the order-€, terms in the diffusion equation ( l a )  over the entire 
cross-section, we find that C must satisfy the longitudinal dispersion equation 

aT c + a,( (U@) - D) CO) = a, C), (3) 
where the overbar denotes the cross-sectional average. To evaluate the shear 
term (i.e. the term involving C(l) and U(0)) we must solve (Zu-e). 

A more painstaking analysis would permit us to determine the parameter 
range over which (2) and (3) remain essentially unchanged. Specifically, if the 
eddy diffusivities and reduced gravity are of order €1 and e7-l then it is necessary 
that 3/3 < y, P > - 1  for /3 2 y ,  P > 4(y-1) for /3 d y 

(see figure 1). The shear or turbulent diffusion term dominates in (3) according 
to whether ,8 is positive or negative. 

Equations (2) and (3) are a slight generalization of Erdogan & Chatwin’s 
equations (4.7)-(4.9) and (4.16). The present derivation gives a conditional 
justification of their making the ad hoc approximation of retaining longitudinal 
derivatives of the concentration while neglecting longitudinal derivatives of the 
buoyancy-driven current. A justification of some of the more important im- 
plications, but not of the approximation directly, is given by Barton (1976b). 

3. Shallow-water expansion 
To make progress we must make further approximations. Erdogan & Chatwin 

(1967), and more recently Barton (1976a), linearized equations (2u-e) by 
assuming that the buoyancy effect is small. Here we choose to follow Fischer 
(1967, 1972) and base an approximation scheme on the fact that natural rivers 
and estuaries are typically much less deep than they are wide. (It is also implicit 
that the depth is not constant.) Thus we introduce a second small parameter 

S = H/B, 
where H is a typical channel depth. 
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FIGURE 1. Parameter range of the difisivities, O ( d ) ,  and of the 
reduoed gravity, O(&'-l), for the applicability of (2) and (3). 

We define a new vertical co-ordinate 

2* = 8-12, 

and to achieve minimal simplification specify the scalings 

vi, = Sb$, K$ = &c:, a = S+a*, C(1) = &BC(l)+, Y = &Y*, 
P = 8-#F*. 

Any other choice of scaling for the eddy diffusivities and the reduced gravity 
simply leads to the neglect of some terms. With the asterisks suppressed the 
lateral diffusion equation (2 a)  and the corresponding boundary conditions can 
be written as 

- a,( Ks 8, ccl)) 6(a, Y a, Ctu - 8, a, Cc1)} - s2 a,( K2 av @)) = a2( - UCo)) ax 8, 
a, C(l) + Pi& ha, 0 1 )  = 0 on z = - h(y), ] (4) 

a,C(l) = 0 on z = [. 
At leading order in 6 the other equations are 

- a,( vla a, ~ ( 0 ) )  = P + ag a, 6°C - 2)  - &do)], 

a:( v2s 8; Y )  = ag 8, C(l), 

U(O)=Y=8,Y=O on z = - h ,  8,U(O)=Y=8EY=O on x = c .  

The leading-order solution for the longitudinal velocity is 

(Prych 1970; Fischer 1972). The functions F ( X ,  2') and d0)(X,  2') are determined 
such that the a, 8 term makes no net contribution to the volume flux hlong the 
charnel. In particular, if the eddy viscosity vl, is a function only of the transverse 
position then we have 
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Here a2 is the cross-sectional area and y* denote the two sides of the channel. 
From (5a) we note that in the deeper part of the channel (and certainly for 
5- z > do)) the buoyancy-driven flow is towards the less dense region. This is in 
accord with the intuitive expectation that the denser fluid tends to flow under 
the less dense fluid. 

If we use a regular perturbation expansion 

C(1) = cp + acp + s2cp + . . . 
to solve (4) for C(l), then at leading order we find that CJ1) is vertically well mixed. 
This fact allows us to solve for Yo: 

where $(y) is chosen such that Yo is zero at  the free surface. For vertically 
constant eddy viscosity we have 

lk = N + h ) .  

As was the case with the longitudinal circulation, the transverse circulation 
simply corresponds to the light fluid tending to flow over the denser fluid. 

The order4 terms in (4) are 

- a&, a, C p )  = - a, Yo a, cp, a, C p  = o on z = - h, 5. 
Without loss of generality we take the solution to be 

Thus Cl') describes the slight vertical stratification caused by the transverse 
flow. For vertically constant eddy diffusivities the density difference between 
the channel bed and the free surface is 

a2g(a, Cd1))2 (h + 6)6/320~8 Y ~ ~ .  

Integrating the order-82 terms in the diffusion equation (4) between the 
channel bed and the free surface, we find that Cil) must satisfy the transverse 
dispersion equation 

6 

-h 
a, (1 K2 dz a, cp) + a, (%aZg2(a, cp)3 

At the sides of the channel we have the zero-flux condition 

(c [+ h) a, cp = 0. 

One integration with respect to y yields a cubic equation for a,, C@) which, making 
use of (5  a), we can write as 

a, ClPW0(?4 + (a,  cP)2 K2(Y)I = ax C{Qo(Y) + ax CQl(Y)I, ( 5 4  
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where we have used the abbreviated notation 

K o = J '  K2dz, K 2 -  - .&2g2/e & [ 
Q o = s I - d Y ' s b h  [ s - h  v13 ' 

& I T  dzlf ( (6-z")2-@(c-Zn) 
-h - h K 3  -h  -h %3 

dz F -dz'-U], 6-2' 

Q1 = i a g r  dy'J' d z r  dz'(('-' 2-Z(O)([-z') 

21- -h -h '13 

The positivity of the coefficients on the left-hand side of ( 5 d )  ensures that there 
is a unique solution for a,cp. 

For subsequent identification we note that KO is associated with the turbulent 
transverse mixing, K,  with the buoyancy-induced transverse shear dispersion, 
Qo with the shear flow, and Q1 with the buoyancy-induced longitudinal circula- 
tion. For vertically constant eddy diffusivities we have 

19([+ h)Oa2g2 
KO = ~ d C + h ) ,  K2 = 7.10.124 v g 3 K 3 *  

Qo = f F Y  (g+h)3dy'-a 

Q1 = & g { r  w d y ' - $ z ( O ) Y  y d y ' ) .  

21- V i a  

21- v13 U- 

4. Dispersion coefficient 
Although the use of moving axes was appropriate in the formal derivation of 

the results ( 3 )  and (5) ,  in applications it is more convenient to use stationary 
axes. Similarly, it may be desirable to re-interpret the equations in terms of 
dimensional variables or in terms of some scaling other than the minimal- 
simplification scaling. Of course, the validity of the equations still depends upon 
the validity of the underlying assumptions (i.e. that the pollutant distribution is 
laterally well mixed and that the channel is shallow). In (5a-d) we merely need 
to replace 8, by a,, and we replace the longitudinal dispersion ( 3 )  by 

The occurrence of the cross-sectional area d under the differential operators 
allows for the possibility of very gradual depth or proae changes (Harleman & 
Thatcher 1974). A direct derivation including this effect shows t,hat the time 
scaIe for current variations should be comparable with or longer than the time 
scalg for longitudinal dispersion. An integration by parts enables us to rewrite 
the shear diffusion term: 

with (6  a)  a,(&) + a,(dac) = 8,[(Z1 + E ) d a ,  81, 

As befits a diffusivity, the shear dispersion coefficient I3 is necessarily positive. 
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FIUURE 2. Definition sketch for the cross-section 
used in the analysis. 

For weak buoyancy effects it is reasonable to model the eddy diffusivities as 
being independent of the concentration gradient 8, c. This leads to E having the 
Taylor-series expansion 

This formula makes quite clear the order in which the various circulation 
mechanisms come into play as the buoyancy effect increases. First there is shear 
dispersion augmented by longitudinal turbulent mixing (Taylor 1953; Fischer 
1967). Next, the longitudinal circulation becomes important (Prych 1970; 
Fischer 1972). Finally, the transverse circulation comes into pIay and tends to 
reduce the dispersion (Erdogan & Chatwin 1967; Barton 1976b). These quali- 
tative considerations remain valid for more complicated models in which the 
eddy diffusivities depend upon a, b. 

In  the absence of buoyancy, a reasonable approximation to the local eddy 
diffusivities can be obtained from the formulae 

Kg = .;[Op++), vgj = Y;$IO[(h+y),  (8) 

where ?? is the velocity at the free surface and v;, and K; are numerical constants. 
These formulae presume a linear relationship between the shear velocity U* 
and the more readily measured (or calculated) free-surface velocity. Typically, 
in field conditions the vertical transport coefficients K;, vi3 and vi3 are of order 
0.005 and the horizontal transport coefficients K; and K; are of order 0.02. The 
above formulae are equivalent to modelling the eddy diffusivities as being 
proportional to (h++)#. Fischer (1972) proposed a similar model in which the 
difisivities depend linearly upon the local depth. 

For a channel of triangular cross-section (as shown in figure 2) we ikd  
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FIQURE 3. Longitudinal dispersion coefficient as a 

function of the local concentration gradient. 

Assuming that these expressions remain valid for weak buoyancy, we can 
determine the coefficients in the Taylor series (7) for E explicitly: 

23 28 
+G(") B 32.5.72K4V;3 3*. 53. 73. l l ~ ; (  v;J2 

1 -G3( 211.19 "> 313. 51°. 7.11 .13& 210.19 - 
G2 312. 5'. 7.11Kj( Y&)2 (K4)4 (K;)~+ "' ' 

where G is the local longitudinal gradient Richardson number, i.e. 

G = agHBa,C/a181. (9) 

G positive corresponds to the fluid being less dense downstream. The repeated 
occurrence of and K; in the denominators permits the coefficients to be quite 
large. Specifically, with the horizontal and vertical transport coefficients set 
equal to 0.02 and 0.005: respectively, we have 

E = -  B 2 1 u l  [0.254+36.26(:) + 13-4G2(i)2- 1736G2-24966G3 (;)+...I. - 
H 

Thus we infer that even for very small G the transverse circulation can cause a 
marked reduction in the longitudinal dispersion (see figure 3). For channels of 
other shapes only the numerical factors are changed. 

For large buoyancy effects the modelling of the eddy diffusivities is more 
crucial. First, the lateral distribution of the current and hence of the eddy 
diffusivities is changed. Second, the vertical stratification tends to reduce the 
turbulent transport (Turner 1973, p. 161). For rectangular channels only the 
latter effect is operative and there is an increase in the time needed to achieve 
vertical mixing and an increase in the longitudinal dispersion (Ippen & Harleman 
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1961). Fortunately, for non-rectangular channels the buoyancy-induced motion 
is primarily horizontal, and the vertical stratification Cil) is two orders smaller 
than the longitudinal stratification. Thus we can hope that there is a significant 
range of the longitudinal gradient Richardson number G in which the vertical 
stratification plays a negligible role. This can be checked using the solution 
(6c) for Cjl). 

The simplest possibility is to ignore any dependence of the eddy diffusivities 
upon the concentration gradient 8, C. This leads to the asymptotic representation 

Thus, for sufficiently large concentration gradients the longitudinal circulation 
causes an increase in the longitudinal dispersion (see figure 3). 

A more realistic way of modelling the eddy-diffusivity distribution would be 
to make direct use of the empirical relationship (8). This leads to a considerable 
increase in the complexity of the analysis. For example (6a) becomes 

It I It I = +P(c+ h) + Qaga, C{(C+ h)2 - +z(o ) (~+  h)), 

where P and do) are nonlinear functionals of 0. The solutions will be very much 
as before until G becomes of order vi3 B/H. Thereafter the large longitudinal 
circulation causes increased turbulent transport and slightly inhibits the 
increase in the longitudinal dispersion. For large a, 8 it can be ascertained that 
E grows as la,8l*. 

Both the above models predict smaller growth rates of the dispersion than 
does the empirical linear model of Harleman & Thatcher (1974). This is com- 
patible with the fact that here we have ignored the role of vertical stratification 
whereas the range of observations used by Harleman & Thatcher extends to 
relatively stratified conditions. 

5. Practical implications 
The density differences associated with salinity are several hundred times 

larger than those associated with temperature. Thus we can anticipate that 
strong buoyancy effects will be apparent in estuary flows. There is no such thing 
as a typical estuary, but to permit quantitative statements we specify the 
parameter values 

V - 06ms-1, B - 15Om, H - 20m. 

An essential requirement of the above analysis is that the flow is laterally well 
mixed. An estimate of the cross-sectional mixing time is 

B2/8Z2 - 4 h. 

This is a considerable overestimate if there is any transverse circulation. If we 
take C to measure the salinity in parts per thousand and measure longitudinal 
distance in kilometres, then we get 

ag - - 7.5 x IO-srn s-2, g - - 9 x io-2aZ 8. 
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The ocean salinity is typically 32 parts per thousand. Thus, using figure 3, we 
infer that the dispersion is strongly affected by buoyancy unless the mixing 
between fresh and salt water extends over 100km. 

As the tide turns the value of G increases without bound, and according to the 
present scalings E (but not c) has a weak singularity. A more appropriate 
scaling for the turning of the tide would show that E briefly becomes extremely 
large but finite. For most of the tide the dispersion will be of order 1 km2day-l. 
If we were strictly to abide by the quasi-stationarity assumption, then for the 
dispersion time scale to be of the order of one day it would be necessary for the 
mixing region to have a length of only several kilometres. By virtue of the 
minimal-simplification structure of the above calculation procedure, it is plausible 
that (6a, b )  remain applicable when the dispersion is only a minor (but systematic) 
addition to the back-and-forth advection of the fluid. In a subsequent paper it is 
hoped to present an alternative calculation procedure which is more purpose- 
built for estuaries. 

For a navigable river a possible specification of river conditions is 

U-0.1ms-1, B-20112, H - 6 m .  

Cross-sectional mixing would take about one and a half hours, or equivalently 
would be achieved within half a kilometre of the source of the contaminant. If 
we take heat to be the source of buoyancy, measure C in degrees Celsius and 
measure longitudinal distance in kilometres then we get 

ag 10-3m~-2, a io-2aZC. 

Thus, for buoyancy significantly to inhibit the dispersion (and to accelerate 
the cross-sectional mixing) the temperature gradient would have to exceed 
2 "C km-l. This would correspond to an industrial plant taking much less than 
two hours to build up to or close down from a 60MW cooling requirement. For 
small concentration gradients the dispersion coefficient E is of order 0.17km2 
day-1. This means that a 2 km long plug of heated water is effectively dispersed 
in one day. However, a rapid build-up and close-down seals off the ends of the 
plug (by means of reducing the dispersion) and permits it to preserve its identity 
for several days. If this were repeated at industrial plants further down the river 
then unexpectedly large temperatures could arise. Similar considerations apply 
to processes in which very hot water is discharged intermittently into a river. 
An increase in the amount of heat discharged would reduce the dispersion and 
would cause a greater temperature increase than might be anticipated. 

The author would like to thank C.E.G.B. for financial support through the 
award of a research fellowship. 
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